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ABSTRACT: In this study, a hybrid En3DVar data assimilation (DA) scheme is compared with 3DVar, EnKF, and pure

En3DVar for the assimilation of radar data in a real tornadic storm case. Results using hydrometeor mixing ratios (CVq) or

logarithmic mixing ratios (CVlogq) as the control variables are compared in the variational DA framework. To address the

lack of radial velocity impact issues when using CVq, a procedure that assimilates reflectivity and radial velocity data in two

separate analysis passes is adopted. Comparisons aremade in terms of the root-mean-square innovations (RMSIs) as well as

the intensity and structure of the analyzed and forecast storms. For pure En3DVar that uses 100% ensemble covariance,

CVlogq and CVq have similar RMSIs in the velocity analyses, but errors grow faster during forecasts when using CVlogq.

Introducing static background error covarianceB at 5% in hybrid En3DVar (with CVlogq) significantly reduces the forecast

error growth. Pure En3DVar produces more intense reflectivity analyses than EnKF that more closely match the obser-

vations.HybridEn3DVar with 50%B outperforms other weights in terms of theRMSIs and forecasts of updraft helicity and

is thus used in the final comparison with 3DVar and EnKF. The hybrid En3DVar is found to outperform EnKF in better

capturing the intensity and structure of the analyzed and forecast storms and outperform 3DVAR in better capturing the

intensity and evolution of the rotating updraft.

KEYWORDS: Data assimilation; Numerical weather prediction/forecasting

1. Introduction

The initial conditions are critical for numerical weather

prediction (NWP). For convective-scale NWP, when the

initial condition does not contain convective-scale infor-

mation, the model has to go through ‘‘spinup’’ process to

develop convective-scale processes that tends to delay the

onset of precipitation in the forecast, affecting very-short-

range forecast skill of precipitation and other hazardous

weather (e.g., Sun et al. 2014). To improve the initial con-

dition and alleviate the spinup problem, efforts assimilating

Doppler weather radar observations, including the radial

velocity and reflectivity Z, which contain rich information

on precipitating hydrometeors and flow fields within storms,

have shown great promises (Sun and Crook 1994, 1997, 1998;

Snyder and Zhang 2003; Xue et al. 2003; Dowell et al. 2004;

Tong and Xue 2005; Xue et al. 2006; Tong and Xue 2008;

Xue et al. 2009; Yussouf and Stensrud 2010; Auligné et al.

2011; Dawson et al. 2015; Gustafsson et al. 2018). Different

data assimilation (DA) methods have been used in these

studies.

The three-dimensional variational (3DVar) method is one

of the most commonly used DA methods because of the

computational efficiency. However, 3DVar is not necessarily

best suited for convective-scale DA, because of the lack of

simple balance relations at the convective scale among the

model state variables, which are often exploited in its large-

scale applications (Wu et al. 2002; Sugimoto et al. 2009). The

hydrostatic or quasigeostrophic balances typically assumed for

large-scale DA are no longer suitable; instead highly nonlinear

3D dynamics and complex microphysical processes are domi-

nant. Although positive impacts have been found by assimi-

lating radar data using 3DVar (Gao et al. 2004; Xiao et al. 2005;

Hu et al. 2006; Xiao et al. 2007; Zhao and Xue 2009; Du et al.

2012; Gao and Stensrud 2012; Ge et al. 2012, 2013; Xue et al.

2014), the assimilation of reflectivity data is often achieved

through indirect approaches, such as an add-on complex cloud

analysis step (e.g., Hu et al. 2006), latent heat nudging (Wang

and Warner 1988; Manobianco et al. 1994; Dixon et al. 2009;

Ballard et al. 2016; Simonin et al. 2017), or by assimilating

preretrieved hydrometeor mixing ratios (e.g., Wang et al.

2013). Due to the lack of general balance among the state

variables, rapid initial adjustments usually occur in the initial

forecasts, leading to rather rapid loss of prediction skill (Kain

et al. 2010; Xue et al. 2013).

To produce convective-scale initial conditions in which state

variables are dynamically consistent with each other, the NWP

model that governs the state evolution should be utilized. The

four-dimensional variational (4DVar) method that employs

the full NWPmodel as a strong constraint is a natural choice to

fulfill such a requirement; unfortunately, nonlinearities asso-

ciated with complex physical processes that are important for

accurate convective-scale prediction make the application of

4DVar at the convective-scale technically very challenging. In

2017, hourly cycling 4DVar was implemented at the British

Met Office, but radar data assimilation is only limited to radial

velocity data (with 15-min DA frequency) (Gustafsson et al.

2018). The application of 4DVar for reflectivity data assimi-

lation has been mainly limited to systems based on simple

models (e.g., Sun and Crook 1997).Corresponding author: Ming Xue, mxue@ou.edu
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The ensemble Kalman filter (EnKF, Evensen 1994) is an-

other approach that employs the full NWP model within the

DA process through ensemble forecasts; the relations among

the state variables are realized through the cross-variable

forecast error covariances estimated from the ensemble. Since

its initial introduction to convective-scale DA about 15 years

ago, the EnKF method has enjoyed great popularity and rea-

sonable success for radar data assimilation and convective-

scale NWP (e.g., Snyder and Zhang 2003; Dowell et al. 2004;

Zhang et al. 2004; Tong and Xue 2005; Xue et al. 2006; Jung

et al. 2008; Tong and Xue 2008; Aksoy et al. 2009, 2010; Jung

et al. 2010; Dowell et al. 2011; Snook et al. 2011; Zhang et al.

2011; Jung et al. 2012a; Snook et al. 2012; Stensrud et al. 2013).

There are issues with EnKF also, however. Because of the

rather limited size of the ensemble that can be afforded in

practice, the background error covariance matrix estimated

from the limited ensemble is severely rank deficient, which

usually leads to spurious long-range correlations (Hamill and

Snyder 2000). Although covariance localization helps to alle-

viate the problem, it usually prevents the inclusion of long-

range balances that are physical (Houtekamer et al. 2005;

Kepert 2009; Greybush et al. 2011). In comparison, static, non-

flow-depedent, climatological background error covariance

that often assumes simple Guassian correlation models, is usu-

ally full rank, or close to full rank. Certain large-scale/longer-

range correlations are often built into the static covariances

(e.g., Wu et al. 2002).

To take advantage of the beneficial aspects of static and

flow-dependent ensemble covariances, a hybrid approach that

utilizes a linear combination or weighted average of the static

and ensemble covariances within a 3DVar framework was

proposed by Hamill and Snyder (2000), and tested with rela-

tively simple models (Hamill and Snyder 2000; Etherton and

Bishop 2004). Lorenc (2003) proposed an alternative compu-

tationally much more efficient hybrid algorithm that employs

extended control variables, andWang et al. (2007) showed that

this algorithm is mathematically equivalent to that of Hamill

and Snyder (2000). The use of hybrid covariances helps alle-

viate the rank deficiency problem, and allows for the utilization

of longer-range correlations found in the static covariance. The

use of a variational framework for simultaneous assimilation of

all observations enables covariance localization in the model

space, instead of the observation space required by EnKF al-

gorithms, such as the ensemble square root algorithm of

Whitaker and Hamill (2002). Also, equation constraints can be

incorporated into a variational framework much more easily.

Potential benefits of hybrid DA over 3DVar and EnKFwere

first demonstrated using the simple models (e.g., Hamill and

Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; Wang

et al. 2007), then applied to global (Buehner et al. 2010b,a;

Clayton et al. 2013) and mesoscale NWP models (e.g., Li et al.

2012; Zhang et al. 2013; Pan et al. 2014). For the convective

scales, hybrid DA applications have been more limited; exist-

ing studies have only tested the method with simulated ob-

servations, assuming no model error (Gao et al. 2013, 2014,

2016; Kong et al. 2018). To apply the hybrid method to radar

DA problem, the radar radial velocity and reflectivity data will

need to be properly assimilated variationally.

The direct assimilation of reflectivity in a variational frame-

work, however, faces specific difficulties when using the hydro-

meteor mixing ratios as the control variable (CVq); this is due

to the nonlinearity of the reflectivity observation operator, as

first reported by Sun and Crook (1997). Specifically, when

background rainwater (or snow or graupel or hail) mixing ratio

is very small, the gradient of the cost function can become

extremely large, making the total cost function minimization

difficult to converge. Furthermore, when radial velocity and

reflectivity data are assimilated together using CVq, the gra-

dient of the part of cost function related to reflectivity ob-

servations is much (orders of magnitude) larger than that

corresponding to radial velocity, making the minimization

difficult to converge, and the assimilation of radial velocity

data ineffective (Wang and Wang 2017; Liu et al. 2020).

Alternatively, indirect assimilation of retrieved rainwater

mixing ratio was proposed in Wang et al. (2013) to overcome

some of the difficulties, but their study assumed warm-rain

processes only, that is, that the reflectivity is only a function of

rainwater mixing ratio. Ideally, reflectivity is assimilated di-

rectly, and the partitioning among the hydrometeors contrib-

uting to the observed reflectivity is left for the DA system to

determine. To avoid the same problem, Wang and Wang

(2017) proposed to use reflectivity as the control variable in-

stead (referred to as CVZ here). With this approach, tangent

linear or adjoint of the reflectivity observation operator is not

needed, so that the extremely large values of the tangent linear

and adjoint of the observation operator for small mixing ratios

can be avoided. However, with the CVZ approach, static

background error covariance cannot be easily incorporated

into the variational cost function to form a hybrid EnVar

system in the traditional sense. This is because that in such a

hybrid system, the static background error covariance is un-

likely accurate for the highly spatially and temporally varying

hydrometeor and reflectivity variables, and as in 3DVar,

analysis increments in hydrometeor variables rely almost

exclusively on the relationships between hydrometeors and

reflectivity as given by the reflectivity observation operator.

The adjoint of the operator defines the sensitivity of the hy-

drometeors to reflectivity, which is used to variationally adjust

the hydrometeor state variables given reflectivity observation

innovations. Therefore, to effectively include the effect of

static background error covariance in a hybrid system, tangent

linear and adjoint of the reflectivity observation operator are

still needed.

In Carley (2012), the logarithms of the hydrometeor mixing

ratios are used as the control variables (named CVlogq here-

inafter) for radar data assimilation instead of CVq; the use of

CVlogq is found to substantially reduce linear approximation

errors of the reflectivity observation operator [which is also

noted in Wang et al. (2011)] relative to CVq. More recently,

Liu et al. (2020) report based on observing system simulation

experiments (OSSEs) with 3DVar that CVlogq can avoid the

convergence difficulties encountered with CVq, but it can also

cause improper spreading of analysis increments when the in-

crement of logarithmic mixing ratios is converted back to

mixing ratios. A number of technical treatments were pro-

posed in their study to alleviate the problems, resulting in
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better analyses and forecasts of a supercell storm. However,

the relative performances of CVlogq and CVq for real cases or

in an EnVar framework have yet to be examined. As to the

special treatments, the following are used. When using CVq, a

lower limit is added to the hydrometeor mixing ratios (qLim)

or to equivalent reflectivity (ZeLim) in the reflectivity obser-

vation operator to confine the gradient of reflectivity DA. A

double-pass procedure is used that assimilates reflectivity and

radial velocity in two separate passes. When using CVlogq, a

smoothing function and a lower limit are applied to the back-

ground hydrometeor mixing ratios when converting the anal-

ysis increment from the logq space back to the q space to help

suppress improper spreading of the analysis increments. More

details can be found in Liu et al. (2020).

In Kong et al. (2018), hybrid ensemble-3DVar (En3DVar)

was systematically compared with EnKF, 3DVar, pure

En3DVar (with 100% ensemble covariance) in the OSSEs

for a simulated supercell storm under perfect model assump-

tion. Radar radial velocity and reflectivity data were assimi-

lated. To facilitate direct comparison between EnKF and pure

En3DVar, a ‘‘deterministic forecast’’ EnKF algorithm, called

DfEnKF, was introduced, in which the ensemblemean forecast

within regular EnKF was replaced by a deterministic forecast

starting from the ensemble mean analysis making the algo-

rithm more analogous to pure En3DVar. When all algorithms

were independently tuned optimally, hybrid En3DVar did not

outperform DfEnKF or pure En3DVar, though their analyses

were all better than 3DVar analyses. Therefore, when en-

semble error covariance was a good estimation of the true error

distribution, the benefit of static background error covariance

used in the hybrid En3DVar was not obvious in the perfect-

model OSSEs. Furthermore, CVlogq or other new treatments

developed in Liu et al. (2020) were not used in the OSSEs of

Kong et al. (2018). Experiments with real data where model

errors are inevitable, and using improved treatments are

obviously needed.

In this paper, the hybrid En3DVar algorithm documented in

Kong et al. (2018) including additional treatments from Liu

et al. (2020) is applied to a real tornadic storm case, and its

performance relative to 3DVar, EnKF and pure En3DVar are

further examined. The performances of CVq and CVlogq are

also compared.We aim to address the following questions for a

real case: 1) Does hybrid En3DVar outperform 3DVar and

EnKF? 2) Does static B have positive contribution to the final

analysis and forecasts in the hybrid DA experiments? 3) How

different or similar are EnKF and pure En3DVar that uses the

same 100% ensemble covariance? 4) How much improvement

does the use of CVlogq provide relative to CVq?

The rest of the paper is organized as follows. In section 2, the

DA schemes (EnKF, DfEnKF, and hybrid En3DVar) and the

observation operators are described. In section 3, the real

storm case, the prediction model used, the design of data as-

similation experiments, and the radar observations to be as-

similated are introduced. In section 4, CVq and CVloq are

compared in hybrid En3DVar with different hybrid weights. In

addition, EnKF, DfEnKF, and pure En3DVar that use 100%

ensemble covariance are compared for the assimilation of re-

flectivity observations. Sensitivity experiments are conducted

to obtain the optimal covariance weights for hybrid En3DVar,

using CVq or CVlogq. Hybrid En3DVar with optimal covari-

ance weights, 3DVar, EnKF, DfEnKF are compared on the

basis of both objective verifications and subjective evaluations

of physical fields. A summary and conclusions are provided in

section 5.

2. Data assimilation algorithms and radar observation
operators

a. The EnKF algorithm

The ensemble square root filter (EnSRF) algorithm of

Whitaker and Hamill (2002), a variant of EnKF, is used, in

which the ensemble mean and ensemble perturbations are

updated separately:

xa 5 xb 1K[y2H(xb)] and (1)

xa
0

k 5 xb
0

k 2 ~KH(xbk)
0
. (2)

Here, xa 5 1/N�N

k51x
a
k and xb 5 1/N�N

k51x
b
k are mean of the

ensemble analyses (xak) and background forecast vectors (xbk),

xb
0

k 5 xbk 2 xb and xa
0

k 5 xak 2 xa are the perturbations of ensem-

ble forecasts and analyses. Index k is the index of ensemble

member that ranges from 1 to ensemble size N, y is the ob-

servation vector, and H is the observation operator, which can

be nonlinear. Here

K5 [r
s
+(P̂bHT)](HP̂bHT 1R)

21
and (3)

FIG. 1. The model and DA domain and locations of four S-band

WSR-88Ds (KTLX, KVNX, KFDR, and KINX as marked by the

black dots) the data of which are assimilated, overlaid with the

damage paths of tornadoes (blue and red trajectories) that oc-

curred in Oklahoma on 10 May 2010. The red trajectory indicates

the damage path of the EF3 storm simulated in this study.
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~K5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

HP̂bHT 1R

s !
K: (4)

K (~K) is the (‘‘reduced’’) Kalman gain, and H is the tangent

linear observation operator. Ensemble covariance P̂b is esti-

mated from xbk and is used in the Kalman gain; R is the observa-

tional error covariance. A Gaspari and Cohn (1999) localization

function is used to localize the ensemble covariance; rs is the

Schur product with the correlation matrix rs. A more detailed

description on the EnSRF algorithm as implemented in the

Advanced Regional Prediction System (ARPS) framework

can be found in Xue et al. (2006) and Kong et al. (2018).

b. The DfEnKF algorithm

In the standard EnKF, as in Eq. (1) of EnSRF, the ensemble

mean analysis xa is based on the ensemblemean forecast xb and

its observational counterpart H(xb). However, in En3DVar, a

single, deterministic forecast is run from the En3DVar analysis

of the previous cycle, and this forecast is updated by the

En3DVar algorithm. To facilitate more direct comparison

between EnKF and En3DVar, an alternative implementation

of EnKF, called DfEnKF, first introduced by Kong et al.

(2018), is also tested here. In DfEnKF, a single deterministic

forecast xfd, serving as the background xbd, that starts from a

previous analysis xad, is updated using the ensemble mean up-

date equation given in (1). To better describe the algorithm,

Eq. (6) in Kong et al. (2018) is reproduced here as follows:

xad 5 xbd 1K[y2H(xbd)] , (5)

where xad is the DfEnKF analysis, xbd is from the deterministic

forecast xfd at the beginning of the analysis cycle, and K is the

same Kalman gain as in Eq. (1). This ‘‘deterministic’’ analysis

in Eq. (5) is run at the same time as the ensemblemean analysis

in Eq. (1), just like the En3DVar analysis is run alongside the

EnKF. When 100% ensemble covariance derived from the

ensemble perturbations from the EnKF system is used in

En3DVar, its solution should be theoretically the same as the

solution of Eq. (5), under idealized conditions. More discus-

sions on this algorithm can be found in (Kong et al. 2018).

c. The 3DVar and En3DVar algorithms

The hybrid En3DVar algorithm follows Lorenc (2003), in

which the flow-dependent ensemble covariance is introduced

into a 3DVar framework via a set of extended control variables

(Liu and Xue 2016). Within hybrid En3DVar, the background

error covariance is effectively a weighted average of the static

and flow-dependent ensemble covariances, and the weights

FIG. 2. The flow diagrams of DA experiments.

TABLE 1. Descriptions of the assimilating experiments. Suffix ‘‘_CVq’’ indicates using mixing ratios qx (x5 r, s, and h are mixing ratios of

rain, snow, and hail, respectively) as the control variables, whereas ‘‘CVlogq’’ indicates using log10qx as the control variables.

Expt name Use of background error covariance Analysis updating

CTRL (no DA) — —

EnKF 100% ensemble covariance Updates ensemble mean background

forecast and ensemble perturbations

using EnSRF algorithm

DfEnKF 100% ensemble covariance Updates a single deterministic background

forecast using EnSRF ensemble mean

updating algorithm

HEn3DVar0%B_CVq/CVlogq (or

PEn3DVar_CVq/CVlogq)

0% static and 100% ensemble covariance Updates a single deterministic background

forecast using En3DVar algorithm

HEn3DVar5%B_CVq/CVlogq 5% static and 95% ensemble covariance

HEn3DVar25%B_CVq/CVlogq 25% static and 75% ensemble covariance

HEn3DVar50%B_CVq/CVlogq 50% static and 50% ensemble covariance

HEn3DVar75%B_CVq/CVlogq 75% static and 25% ensemble covariance

HEn3DVar100%B_CVq/CVlogq (or

3DVar_CVq/CVlogq)

100% static and 0% ensemble covariance
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vary between 0 and 1; when the weight of static error covariance

is 1 (0), the scheme becomes pure 3DVar (pure En3DVar).

Detailed equations of the En3DVar algorithm as well as infor-

mation on the radar radial velocity and reflectivity observation

operators can be found in (Kong et al. 2018). To produce phys-

ically consistent hydrometeor analyses, temperature-dependent

vertical profiles are specified for the static background errors

of hydrometeor variables in 3DVar and hybrid En3DVar based

on Liu et al. (2019). Because of the lack of cross covariance in

the static background error covariance, the 3DVar is by itself

univariate although additional equation constraint in the cost

function can couple state variables together. Spatial covariance is

realized through spatial recursive filter (Gao et al. 2004).

3. Case overview, prediction model, and DA experiment
design

a. Case overview

On 10 May 2010, a total of 56 tornadoes favored by an in-

tense dryline occurred in the state of Oklahoma, including two

FIG. 3. Comparisons of the RMSIs of (left) radial velocity (m s21) and (right) reflectivity (dBZ) analyses and

forecasts from hybrid En3DVar with (a),(b) 0%; (c),(d) 5%; (e),(f) 25%; (g),(h) 50%; (i),(j) 75%; and (k),(l) 100%

weight of static B for CVq and CVlogq. The RMSIs of hybrid En3DVar with 0% B are also overlaid in Figs (c)–(l)

as references.
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tornadoes at intensity level 4 on the enhanced Fujita scale

(EF4; WSEC 2006) and four tornadoes at intensity level 3 on

the enhanced Fujita scale (EF3) that produced significant

damage over many areas. Three people were killed and over

450 people were injured in the state of Oklahoma during the

tornado outbreak. This was the second largest tornado out-

break documented in Oklahoma (with the largest one occur-

ring on 3 May 1999). From 1700 to 1941 CDT, a total of 42

different tornadoes occurred. The tornadic storms moved at

speeds of 50–60mi h21 (;80–95 kmh21), with the tornado

damage paths spreading over a north–south area of over 200mi

(320 km); softball size [about 3.5 in. (;8.9 cm) in diameter] hail

was also reported at several locations.

According to the National Weather Services, there were 13

different storms producing tornadoes on that day. They are

denoted storms A–O (see https://www.weather.gov/oun/events-

20100510). Among these storms, storm J was the most pro-

ductive, spawning 20 of 55 tornadoes, including one EF4 (J1)

and one EF3 (J4) tornado, causing one fatality and several in-

juries. Considering that tornado J4 (referred to as the Seminole

storm hereinafter since most of the damage path is located in

Seminole County; Fig. 1) has the largest damage width, the

convective system that spawned tornado J4 is selected as the

focus system of this study.

b. Prediction model

The ARPS model is used during the DA cycles and the free

forecasts after DA. To capture all long track storms traversing

Oklahoma that day, the model domain is set to cover most of

Oklahoma except for its northwest Panhandle area (the narrow

westward extension of the Oklahoma that looks like a handle

of a frying pan), centering at 35.78N and 97.58W (Fig. 1). The

domain size is 363 3 363 3 53, with a 1-km grid spacing in the

horizontal plane and 0.4 km on average in the vertical direction

with vertical grid stretching. The minimum vertical grid spacing

near the surface is 20m. Full model physics is used, including the

1.5-order turbulent kinetic energy (TKE)-based subgrid-scale

turbulence parameterization (Sun and Chang 1986), a two-layer

soil model (Noilhan and Planton 1989), and the Lin et al. (1983)

single-moment ice microphysics. More details on the physics

options can be found in Xue et al. (2001). Fourth-order mono-

tonic computational mixing is used to help to suppress grid-scale

noise. The values of intercept parameters for rain, snow, and hail

used are 83 106m24, 33 106m24, and 43 104m24, respectively,

in both the microphysics scheme and the reflectivity operator.

c. Design of assimilation experiments

The initial ensembles with a 1-km grid spacing are interpo-

lated from a set of parent (40 member) ensemble analyses at

1900 UTC 10 May 2010 that are initialized at 1500 UTC and

assimilate surface, upper-air, profiler, and radar observations

with a 4-km grid spacing using the ARPS EnKF (Jung et al.

2012b, 2013). Similarly, the external boundary conditions (also

with a 4-km grid spacing) are interpolated from the hourly

parent ensemble forecasts initialized from the parent ensemble

analyses at 1500 UTC using the ARPS model (Xue et al. 2000,

2001). Since the ensemble is initialized from coarser-resolution

analyses, 30-min spinup ensemble forecasts are first run from

2100 UTC on the 1-km experiment grid. Radar radial velocity

and reflectivity data from radar sites in Oklahoma (KTLX,

KINX, KVNX, and KFDR) are then assimilated every 5min

from 2130 to 2230 UTC using 3DVar, EnKF/DfEnKF, and

En3DVar with and without static covariance (corresponding to

hybrid and pure En3DVar, respectively) DAmethods (Fig. 2).

Multiplicative inflation with an inflation factor of 20% is ap-

plied to regions where observed reflectivity is higher than

5 dBZ. In addition, adaptive inflation that inflates the posterior

ensemble spread in proportion to the amount of ensemble

spread reduced in DA (Whitaker and Hamill 2012) is applied.

The inflation coefficient used is 0.95. Covariance localization

radii for radar observations are set to 6 and 4 km in the hori-

zontal and vertical directions, respectively, using a fifth-order

correlation function of Gaspari and Cohn (1999). Similar radii

are used in Snyder and Zhang (2003) and Aksoy et al. (2009)

For pure and hybrid En3DVar, the recursive filter decorrela-

tion length scales for the localization of ensemble covariance

are 1.6 km in the horizontal plane and 1.1 km in the vertical

direction, respectively, which are equivalent to the 6- and 4-km

cutoff radii for EnKF based on Eq. (4) in Pan et al. (2014). For

3DVar, the decorrelation scales for the static background error

covariance used are 4.1 and 1.4 km in the horizontal and ver-

tical directions, respectively, following those used in (Kong

et al. 2018).

Radar data assimilated are radial velocity where observed

reflectivity exceeds 10 dBZ, and reflectivity data everywhere

(including ‘‘clear-air’’ reflectivity, e.g., reflectivity ,5 dBZ)

from fourWSR-88Ds (OklahomaCity, Tulsa, VanceAir Force

Base, and Frederick or KTLX, KINX, KVNX, KFDR, re-

spectively). The observation errors for reflectivity and radial

velocity are 5 dBZ and 3m s21, typical of expected errors with

real radar observations that also include representation errors.

Five experiments are performed to evaluate the perfor-

mance of different DA algorithms, that is, hybrid En3DVar,

pure En3DVar, 3DVar, EnKF, and DfEnKF. As defined in

Kong et al. (2018), DfEnKF is updated in the same manner as

the ensemble mean background in EnKF and, therefore, is

FIG. 4. Comparisons of the RMSIs of the analyzed reflectivity from

CTRL, PEn3DVar, EnKF, and DfEnKF.
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algorithm-wise parallel to pure En3DVar. At the end of DA

cycles at 2230 UTC, a single deterministic forecast is launched

from the ensemble mean or deterministic analysis of each al-

gorithm. The configurations of these experiments are summa-

rized in Table 1.

In EnKF and En3DVar DA, we choose not to update the

horizontal velocity fields (u, y) using assimilating reflectivity

data because the relatively small physical correlations among

their background forecast errors can be dominated by

noise/errors, leading to large errors in analyzed winds if up-

dated (by reflectivity). A weight of 5%, 25%, 50%, and 75%

are given to the static background error covariance (experi-

ments names are suffixed with ‘‘%B’’ in Table 1) in a set of

hybrid En3DVar sensitivity experiments, and the results are

compared to determine the optimal covariance weights.

As discussed in section 1, the gradient of the cost function of

reflectivity can bemuch larger than that of radial velocity when

hydrometeor mixing ratios are used as the control variables

and, thus, radial velocity assimilation becomes ineffective

(Wang and Wang 2017; Liu et al. 2020). We compare two ex-

perimental setups: 1) directly using hydrometeors as the con-

trol variables (CVq) but assimilating reflectivity and radial

velocity data separately in two passes (corresponding experi-

ments using a single pass are also done, but the results are clearly

worse and therefore are not included) and 2) using logarithmic

mixing ratios as the control variables (CVlogq) and assimilat-

ing radial velocity and reflectivity data together. The perfor-

mances of CVq with double passes and CVlogq are evaluated

in the En3DVar framework, using different hybrid covariance

weights. The results of different DA experiments are compared.

More details on the experiments can be found in Table 1.

d. Radar data preprocessing and quality control

The operational WSR-88D data from four radar sites in

Oklahoma (KTLX, KINX, KVNX, and KFDR) are interpo-

lated horizontally to the ARPS model grid column locations

but are kept on the original radar elevation levels in the ver-

tical. A radar beam-pattern weighting function is applied in the

FIG. 5. Reflectivity (a)–(d) observations and analyses at 8 km AGL from (e)–(h) EnKF, (i)–(l) DfEnKF, and (m)–(p) PEn3DVar for the

beginning four DA cycles, valid at (left) 2130 UTC, (left center) 2135 UTC, (right center) 2140 UTC, and (right) 2145 UTC.
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vertical in the radial velocity and reflectivity observation op-

erators, as described in Xue et al. (2006). Automatic quality

control is applied to the radar data that includes velocity

dealiasing, despeckling, and removal of ground clutters and

anomalous propagation artifacts (Brewster et al. 2005).

4. Results of assimilation experiments

a. Comparisons between CVq and CVlogq with hybrid

En3DVar and different weights

The root-mean-square innovation (RMSI, where innova-

tion is the difference of observation prior or posterior from

observation) is used to quantify model analysis and forecast

quality and compare the performance of different DA algo-

rithms. In this study, the RMSIs are calculated over regions

where the observed reflectivity exceeds 15 dBZ. Figure 3 shows

the RMSIs of radial velocity and reflectivity analyses and

forecasts from hybrid En3DVar with different weights of static

covariance B using CVq or CVlogq. For hybrid En3DVar with

0% static B, CVq and CVlogq exhibit similar innovations (or

loosely speaking, errors) in analyzed radial velocity and re-

flectivity (Figs. 3a,b) but the forecast error growth is noticeably

faster with CVlogq especially for radial velocity, suggesting

more balanced analyses among the state variables using CVq

FIG. 6. (a) Reflectivity observations and 45-min reflectivity forecasts at 1 km AGL from hybrid En3DVar with

(b) 5%, (c) 25%, (d) 50%, and (e) 75% weight of the static background error covariance B, overlaid with observed

reflectivity contour that is equal to 35 dBZ. The Seminole storm is pointed to by an arrow in (a).
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(Figs. 3a,b) in this case with 0%B.We note here, as was done in

Pan et al. (2014), that for an En3DVar system coupled with an

EnKF system that provides the ensemble covariance, the

EnKF system should in principle also use two separate passes if

two passes are used by En3DVar (with CVq), assimilating the

same set of observations in each pass. This is not done here,

because doing so will significantly increase the computational

cost, and it is our goal to show that using CVlogq can produce

quality analyses without resorting to the two-pass procedure.

The fact that for the second pass of En3DVar (with CVq) that

assimilates Vr observations, the ensemble perturbations are

not updated as they should be after Z observations are as-

similated would tend to allowVr data to have larger impacts on

the state variables that are updated by them (due to the lack of

reduction in the ensemble spread by Z earlier); this may ex-

plain why CVq that uses two passes, appears to be more

effective in producing more balanced analyses and more ac-

curate forecasts.

Introducing nonzeroB into En3DVar significantly improves

the fit of analyzed Vr to observations in all experiment as evi-

denced by the smaller RMSIs of analysis in Figs. 3c, 3e, 3g, 3i

and 3k; the analysis RMSIs for Vr are smallest for CVlogq with

50% B (Fig. 3g). During the analysis cycles, the Vr forecast

errors increase when more weights are given to B for both

CVlogq and CVq, while the improvement to Z RMSIs due to

nonzero B is mostly limited to Z forecasts for CVlogq (e.g.,

Figs. 3f–l). During the free forecast period, the largest im-

provement is seen in the CVlogq experiments, where the Vr

RMSIs become similar to those of CVq cases, and the Vr

forecast RMSIs are slightly lower with nonzero B after the first

10min of forecast (left column of Fig. 3), and those of CVlogq

are slightly larger after 40min of forecast. For Z forecast

FIG. 7. Swaths of 0–1.5-h forecasts of 2–5-km updraft helicity (UH) greater than 200m2 s22 (shaded contours)

from hybrid En3DVar with (a) 5%, (b) 25%, (c) 50%, and (d) 75% weight of the static B, overlaid with the

Seminole tornado (J4) damage path (blue contour). The plotted UH swaths are composited from model output of

UH at 5-min intervals.
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RMSIs, those of CVlogq become more noticeably lower than

those of CVq after the first 20min of free forecast for 25% or

more weight of B (e.g., Fig. 3f).

Since CVq requires that reflectivity and radial velocity

data are assimilated separately in two separate passes to

achieve similar performance as CVlogq, it is computationally

more expensive. Also, since the static or ensemble back-

ground error covariance is not updated across the passes, the

use of multiple passes is theoretically problematic. If the

EnKF has to be split into two passes, the increase in com-

putational cost will be much more, making the approach

unsuitable for operational use. For these reasons, and the

fact that the Z forecast RMSIs are somewhat lower in later

forecasts, CVlogq will be used in the En3DVar experiments

in the rest of this paper.

b. Comparisons between EnKF, DfEnKF, and pure
En3DVar for reflectivity DA

EnKF, DfEnKF, and pure En3DVar (PEn3DVar) all use

100% ensemble covariances. In theory, they should produce

similar results, at least under idealized conditions including

linearity and the absence of sampling error. In practice, their

performances can be different, especially when the observation

operator (such as that of Z) is highly nonlinear as shown by

Kong et al. (2018) in perfect model OSSEs. In this section, we

compare the performance of these three algorithms for a real

case, assimilating reflectivity observations only (because the

algorithms tend to differ more when assimilating reflectivity

whose observation operator is nonlinear). As discussed earlier

and in Kong et al. (2018), DfEnKF, being a deterministic al-

gorithm, is more analogous to PEn3DVar.

The RMSIs of the analyzed Z from experiments EnKF,

DfEnKF and PEn3DVar (Table 1 for CVlogq experiments)

are plotted every 15min in Fig. 4, together with those of CTRL

for reference. Relative to CTRL, all three DA experiments

significantly reduce the RMSIs of Z analyses. EnKF and

DfEnKF perform very similarly and both have a few percent

higher RMSIs than PEn3DVar (Fig. 4).

To see why PEn3DVar has smaller RMSIs than EnKF

(or DfEnKF), the analyzed Z at 8 km (where differences are

most obvious) above ground level (AGL) for the first four

analysis cycles are depicted in Fig. 5. The overall structures of

analyzed Z in EnKF and DfEnKF are similar and both un-

derestimate the intensity of Z compared to PEn3DVar and

the observations in the earlier cycles. After the third cycle,

the analyzed Z of EnKF, DfEnKF, and PEn3DVar become

similar. As discussed in Kong et al. (2018), the serial (where

observations are assimilated one by one in EnKF and

DfEnKF) versus global (where all observations are assimi-

lated simultaneously in PEn3DVar) nature and the direct

updating of state variables using the filter equations (in

EnKF and DfEnKF) versus variational minimization to find

the analysis increments (in PEn3DVar) can cause differ-

ences in the analysis results. With the EnKF algorithm that

is serial, when significant under dispersion occurs during

the DA processes, observations assimilated later in the

serial data processing (within the same cycle) may have

too small impact, and the global En3DVar algorithm may

have advantage. However, the RMSI differences between

EnKF/DfEnKF and PEn3Dvar for this case are probably not

statistically significant.

c. Optimal covariance weights for hybrid En3DVar

To determine a relative ‘‘optimal’’ weight for hybrid En3DVar,

four sets of experiments are selected from section 4a, which

are experiments with 5%, 25%, 50%, and 75% static back-

ground error covariance B with CVlogq. The corresponding

experiments are named as HEn3DVar5%B, HEn3DVar25%

B, HEn3DVar50%B, and HEn3DVar75%B, respectively

(Table 1).

The Z analyses after 1-h DA are very close, as evidenced

by similar RMSIs at 2230 UTC (Figs. 3d,f,h,j,l). When com-

paring the Z fields at 1 km AGL after 45min of the forecast,

the Z forecasts from hybrid En3DVar with weights of B

higher than 25% are similar to or better than those of lower

weights in capturing the Z intensity and structure of the main

supercell compared to the observations (Fig. 6). Storms in

HEn3DVar5%B (Fig. 6b), especially the main tornadic su-

percell storm with a clear hook echo (Fig. 6a), are less orga-

nized than those in experiments with 25%–75% B. The

subjective evaluations based on the structures of Z forecasts

are consistent with the RMSIs of Z forecasts shown in Fig. 3;

the RMSIs for hybrid CVlogq experiments are lower in later

forecasts for B weights larger than 25%. Combined with the

fact that the Vr analysis RMSIs are lowest with 50% B

(Fig. 3g), equal weights for the static and ensemble covariances

appear to be optimal. This is in contrast to the results of perfect

model OSSEs of Kong et al. (2018), where the benefit of in-

cluding static background error covariance B is not obvious.

We believe that when the prediction model is perfect, the state

estimation and ensemble covariances can be rather accurate, as

found in Tong and Xue (2005), the inclusion of a static B is not

FIG. 8. Comparisons of the RMSIs of (a) radial velocity and

(b) reflectivity analyses and forecasts from CNTL, EnKF, DfEnKF,

3DVar, and hybrid En3DVar algorithm with 50% static B, as indi-

cated by the labels in the figure.
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necessary. In our current real case, model error is inevitable,

and significant errors tend to exist in both analyses and fore-

casts, the benefit of including static B is more obvious, and the

optimal weight assigned to the static B is actually quite large at

50%. As shown in Fig. 6, the storms west of the major line of

storms that have developed during the forecast period along a

dryline are mostly missed in all experiments. To improve the

forecast of these storms, observations that can help improve

the prestorm environment near the dryline are likely needed

(Xue and Martin 2006; Liu and Xue 2008).

As described earlier in the case overview, the 10 May 2010

case is one with multiple tornadoes. During the current fore-

cast period, the observed supercell storm over Pottawatomie

and Seminole counties produced an EF3 tornado (J4 in Fig. 1).

To see how well the predicted storm over that region is cap-

turing supercell storm characteristics, in particular a rotating

FIG. 9. (a) Reflectivity observation and 45-min reflectivity forecasts at 1 km AGL from (b) EnKF, (c) DfEnKF,

(d) 3DVar, (e) pure En3DVar, and (f) hybrid En3DVar with 50% static B, overlaid with observed 35-dBZ re-

flectivity contours. The Seminole storm is pointed to by an arrow in (a).
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updraft, among the hybrid En3DVar DA experiments, we plot

the accumulated swaths of the 2–5-km integrated updraft hel-

icity (UH, Kain et al. 2008) that are greater than 200m2 s22

during the 0–1.5-h forecast period, along with the observed J4

tornado damage path (Fig. 7). The swath of predicted UH in

convection-allowing models has been shown to be a good

predictor of tornado potential and is often used to evaluate

prediction of tornadic supercell storms (e.g., Clark et al. 2013;

Snook et al. 2019; Stratman et al. 2020).

As shown in Fig. 7, the strongest forecast UH swath is off to

the southeast of the observed tornado track with 5% B

(Fig. 7a), and the swaths are also much weaker than in other

experiments (Fig. 7). When the weight of static B is equal to or

greater than 25%, the swath of the most intense UH is collo-

cated with the observed tornado damage path. Among these

experiments, HEn3DVar50%B and HEn3DVar75%B have

stronger and more focused (narrower) UH swaths that cover

the observed tornado damage path (Figs. 7c,d). Combined with

earlier discussions, we choose again 50% as the optimal weight

for static B for the hybrid En3DVar.

d. Comparisons of EnKF, DfEnKF, 3DVar, and hybrid

En3DVar with optimal weights

With the optimal weight of B at 50% in HEn3DVar50%B,

the RMSIs of Vr and Z analyses and forecasts are compared

with those of CTRL, EnKF, DfEnKF and 3DVar in Fig. 8.

Compared to CTRL, all DA experiments are able to reduce

the RMSIs. The velocity forecasts of EnKF during the DA

cycles have much smaller RMSIs than other DA experiments

(includingDfEnKF, Fig. 8a).Much of this difference is actually

because of the effects of ensemble averaging to arrive at the

ensemble forecasts used to calculate the Vr RMSIs. The wind

fields in the deterministic forecasts used to calculate RMSI in

all other experiments tend to contain a lot finer scale structures

that are difficult to match up with those in the Vr observations

while the ensemble averaging smooths out many of the

smallest-scale structures. During the free forecast, EnKF ini-

tially benefits from the reduced level of analysis RMSI, but

later its RMSIs become close to those of other DA experi-

ments. All free forecasts are single deterministic forecasts. The

Vr RMSIs for HEn3DVar50%B, 3DVar, and DfEnKF have

similar levels for both velocity analyses and forecasts, with

those of DfEnKF forecasts being slightly larger up to 20min

into the free forecast.

For Z, the RMSIs for both analyses and forecast within the

DA cycles, are, however, a lot closer between EnKF and

DfEnKF (Fig. 8b), presumably because theZ fields contain less

finescale structures than the wind fields so that ensemble mean

for DfEnKF does not have as much impact. During the free

forecast period, the DfEnKF Z RMSIs are initially larger but

FIG. 10. Swaths of 0–1.5-h forecasts of 2–5-km updraft helicity greater than 200m2 s22 (shaded contours) from (a) EnKF, (b) DfEnKF,

(c) 3DVar, (d) pure En3DVar, and (e) hybrid En3DVar with 50%weight of the staticB, overlaid with the EF3 tornado Seminole damage

path (blue contour).
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become smaller after 15min relative to those of EnKF. For

reflectivity, the RMSIs for 3DVar and HEn3DVar50%B are

very similar within the DA cycles and throughout the free

forecast period (Fig. 8b), and are consistently lower than

those of EnKF and DfEnKF, suggesting that the variational

algorithms, 3DVar and hybrid En3DVar, outperform the

EnKF algorithms, in terms of Z. As discussed earlier, and in

Kong et al. (2018), the nonlinearity in the reflectivity operator

tends to make a difference between the global variational

algorithms and the serial EnKF algorithms. It is somewhat

surprising, however, that 3DVar performs almost as well as

the hybrid En3DVar algorithm with optimal hybrid weights,

given that 3DVar does not contain any cross-variable co-

variance. The results are generally consistent with the results

in Fig. 3, where the CVlogq hybrid En3DVar results are

similar once the weight of staticB is 25% or higher. It appears

that for this real case, the quality of ensemble-derived co-

variance is not that good so that the analyses can benefit

from a significant fraction of static B even though it lacks

cross covariances. During the short, rapid assimilation cycles,

state variables not directly updated by 3DVar much have

been adjusting quickly to variables better constrained by the

Vr and Z observations.

Figure 9 compares 45-min forecast Z from different exper-

iments, at the time when the Seminole tornadic storm wasmost

intense in terms ofZ during the free forecasts. HEn3DVar50%

B and 3DVar are able to forecast an intense supercell storm

near the location of observed Seminole storm. The forecast

storm in pure En3DVar (PEn3DVar) does not have a clearly

defined hook echo (Fig. 9e) while EnKF significantly under-

estimates Z intensity and coverage of the supercell storm.

DfEnKF predicts the storm coverage better than EnKF and

PEn3DVar but still underestimates the intensity. The hook

echo signature of the tornadic supercell storm is better cap-

tured in 3DVar and HEn3DVar50%B, with that in the latter

being better defined.

Figure 10 compares the 2–5-kmUH (greater than 200m2 s22)

swaths of 0–1.5-h free forecasts (after DA) for each experiment

against the J4 tornado damage path. The intensity of UH

forecasts from EnKF and PEn3DVar are much weaker than

other DA experiments (Figs. 10a,d). DfEnKF is able to

produce a long and intense UH swath but places too far north

FIG. 11. (a) Radial velocity observation and 1-h radial velocity forecasts at the lowest elevation angle of KTLX (0.58) from (b) EnKF,

(c) DfEnKF, (d) 3DVar, (e) pure En3DVar, and (f) hybrid En3DVar with 50%weight of staticB (or HEn3DVar50%B), with the velocity

couplet circled in black.

JANUARY 2021 KONG ET AL . 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/16/21 08:54 PM UTC



(Fig. 10b). On the other hand, the locations of the UH swath

from 3DVar and HEn3DVar50%B compare well to the tor-

nado damage path. However, the intensity of storm rotations

near the end of the damage path (forecasts) weakens too early

in 3DVar, while high UH (.1400m2 s22) values are main-

tained throughout the entire J4 tornado period in HEn3DVar

forecasts (Fig. 10e).

To better compare the forecast wind structure among the

DA experiments, we plot in Fig. 11 the 1-h forecast Vr at the

lowest elevation angle from different experiments, we see that

HEn3DVar50% better captures the velocity couplet associ-

ated with the mesocyclone within the supercell than other ex-

periments (Fig. 11). The results are consistent with the higher

intensity of the 1-h UH forecasts (pointed by black arrows in

Figs. 10c,e) from hybrid En3DVar than that from 3DVar as

well as the others.

To understand the reasons for the performance difference in

the forecasts, surface perturbation potential temperature fields

from DfEnKF, 3DVar and HEn3DVar50%B are compared

(Fig. 12). The fields from different experiments after 1-h DA

are similar (Figs. 12a–c). However, the forecast cold pool

(especially at 60 min of forecast) from 3DVar is colder than

the other two cases (Figs. 12d–i). As shown in Fig. 11,

HEn3DVar50% better captures the velocity couplet associ-

ated with the mesocyclone within the supercell than 3DVar,

which is believed to be related to the weaker cold pool of

HEn3DVar50%B relative to that of 3DVar. Tornadogenesis

is more likely in supercells that have intermediate intensity

cold pools rather than too strong or too weak cold pools

(Markowski et al. 2002; Grzych et al. 2007; Hirth et al. 2008;

Markowski and Richardson 2014).

A convective cold pool is usually related to melting of ice

particles and evaporation of rainwater at the lower levels. The

vertical cross sections of the mixing ratios of rainwater and hail

through the maximum vertical velocities of DfEnKF, 3DVar,

and HEn3DVar50%B are compared in Fig. 13. The mixing

FIG. 12. Perturbations of the surface potential temperature (K) for (a)–(c) the analyses after 60-minDA (valid at 2230UTC) and (d)–(f)

30-min (valid at 2300 UTC) and (g)–(i) 60-min forecasts after DA (valid at 2330 UTC) from (left) DfEnKF, (center) 3DVar, and (right)

HEn3DVar50%B.
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ratios of the hail and rainwater at the lower levels from 3DVar

is much larger than those of the others in the forecasts afterDA

(Fig. 13), indicative of the potential for more hail melting and

rainwater evaporation and thus more intense cold pool in the

forecasts of 3DVar.

The vertical cross sections of the vertical velocity fields

from DfEnKF, 3DVar, and HEn3DVar50%B are com-

pared in Fig. 14. The updraft from 3DVar is weaker than

that of HEn3DVar50%B, likely leading to more rainwater

and hail falling to the low levels and thus more intense cold

pool. Overall, the reason that HEn3DVar50%B has better

performance than 3DVar is likely because that En3DVar

produces analyzed state variables that are more physi-

cally consistent with each other and so that the analyzed

storm can be sustained in the forecast and hydrometeors

do not fall to ground too quickly. The analyzed hydro-

meteor mixing ratios from DfEnKF are the smallest

(Fig. 14a), which appears to explain why the weakest updraft in

FIG. 13. Vertical cross sections (through the maximum vertical velocities) of the hydrometeor mixing ratios of the rainwater (g kg21;

color shading) and hail (g kg21; magenta contours, from 1 to 20 with interval of 3 g kg21) for (a)–(c) the analyses after 60-minDA (valid at

2230 UTC)and (d)–(f) the 30-min (valid at 2300 UTC) and (g)–(i) 60-min forecasts after DA (valid at 2330 UTC) from (left) DfEnKF,

(center) 3DVar, and (right) HEn3DVar50%B.
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DfEnKF does not lead to a strong cold pool in the forecasts

(Fig. 12a).

5. Summary and conclusions

In this study, radar data from 4 operationalWSR-88D radars

are assimilated using hybrid En3DVar, 3DVar, EnKF, and

pure En3DVar schemes and their relative performance is com-

pared for the 10 May 2010 Oklahoma severe storms including

a tornadic supercell. Radar radial velocity and reflectivity data

are assimilated every 5min for 1 h followed by 1-h ensemble and

deterministic forecasts. To alleviate the unique difficulties as-

similating radar reflectivity and radial velocity together in the

variational framework, two alternative approaches are taken

here: 1) use hydrometeor mixing ratios as the control variables

(CVq) but assimilate reflectivity and radial velocity data in two

separate analysis passes and 2) use logarithmic hydrometeor

mixing ratios as the control variables (CVlogq) and assimi-

late reflectivity and radial velocity simultaneously. CVq and

CVlogq are compared in the pureEn3DVar andhybridEn3DVar

frameworks. In addition, EnKF is compared with pure En3DVar

that uses 100% ensemble covariance. To facilitate direct

FIG. 14. Vertical cross sections of the vertical velocity field (m s21, through their maximum values) for (a)–(c) the analyses after 60-min

DA (valid at 2230UTC) and (d)–(f) the 30-min (valid at 2300 UTC) and (g)–(i) 60-min forecasts after DA (valid at 2330 UTC) from (left)

DfEnKF, (center) 3DVar, and (right) HEn3DVar50%B.
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comparison between EnKF and pure En3DVar, results using a

deterministic forecast EnKF (denoted DfEnKF) introduced

in Kong et al. (2018) is also included here. Finally, Hybrid

En3DVar with 5%, 25%, 50%, and 75% weight of static

background error covariance B is compared with 3DVar,

EnKF, DfEnKF, and pure En3DVar in terms of RMSIs and

subjective assessment of storm features. The experiment re-

sults and related conclusions are summarized as follows:

d Pure En3DVar with CVlogq and CVq have similar RMSIs in

radial velocity analyses but the error growth rate is much

larger in CVlogq than in CVq, suggesting CVq analysis is

more balanced than that of CVlogq. However, the large

error growth in CVlogq is significantly reduced by introduc-

ing a small percentage (e.g., 5%) of static B in hybrid

En3DVar. Since CVq requires reflectivity and radial velocity

data being assimilated separately in two passes to achieve

similar performance to CVlogq, En3DVar with CVlogq is

preferred over the use of the CVq approach, although pure

En3DVar with CVlogq produces somewhat larger RMSIs

of radial velocity than CVq.
d EnKF and DfEnKF perform similarly and both underesti-

mate the intensity of the reflectivity analyses compared to

pure En3DVar analyses, especially in the earlier cycles.
d Hybrid En3DVar with four different weights (5%, 25%,

50%, 75%) of staticB are compared in terms of theRMSIs as

well as forecasts of storm updraft helicity (UH) to determine

an optimal choice of weight among them. They are also

compared with pure En3DVar and 3DVar that effectively

have 0% and 100% weight of B. Hybrid En3DVar with 50%

of B is found to perform better than other weights; it better

captures the hook echo structure of the major tornadic

supercell storm in the 45-min forecast of reflectivity, as

well as in 0–1-h forecasts of UH.
d Hybrid En3DVar with 50% B is compared with 3DVar,

EnKF, DfEnKF, and pure En3DVar in terms of RMSIs and

analyses/forecasts of storm intensity/structures. 3DVar and

hybrid En3DVar outperform EnKF andDfEnKF in terms of

the intensity and structure of storm analyses and forecasts.

The intensity and evolution of UH forecasts are better

depicted in hybrid En3DVar relative to 3DVar. The RMSIs

of radial velocity forecasts during the DA cycles from EnKF

is much smaller than those of DfEnKF and En3DVar in

which a single deterministic forecast instead of the ensemble

mean forecast is used as the forecast background for the

analysis. Such a difference suggests that the averaging of

wind forecasts (wind fields tend to have more special scale

structures) over ensemble members help decrease errors in

the ensemble mean velocity forecasts (which are used to

calculate the RMSIs).
d The better forecast resulting from hybrid En3DVar appears

to be due to its more physically consistent state variables

analyzed that can better sustain the storms in the forecast.

We note that the conclusions obtained here are based on a

single real data case. As the first paper to perform such a de-

tailed comparisons for real storms, we believe such a study

is necessary and allows for more detailed examination of

the assimilation and forecast results. More storm cases are

obviously needed to further examine the relative performance

of hybrid En3DVar, pure 3DVar, and EnKF; to further opti-

mize the algorithms; and to draw more reliable and general

conclusions. This is planned for future studies.
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